
12 Factors App with Docker

On AWS

ThoughtWorks Senior Consultant

Web/RoR/Java/Scala Developer, 3 years DevOps

Book Translation <Scala Cookbook>

AWS Certified Associate Solution Architect

About Me : Ma Bowen

12facters.net

http://12facters.net

Methodology for building Web Apps

Use declarative formats for setup automation

Maximum portability between execution environments

Suitable for deployment on modern cloud platforms

keep environment consistence, continuous deployment

Scale with few changes to tooling/architecture etc

One Codebase, Multiple Deploys

Explicitly declare & isolate dependencies

Ruby Gemfile, e.g `bundle install —path=vendor/bundle`

Debian/RPM

Store Config in Environment

Staging ProductionTest

DB_HOST: testdb

DB_USR: readwrite

DB_PASS:123456

DB_HOST: stgdb

DB_USR: stgrw

DB_PASS:password

DB_HOST: proddb

DB_USR: prodrw

DB_PASS:password&

Backing services as attached resources

Build release run

Processes

The app is executed in the execution environment
as one or more processes.

Twelve-factor processes are stateless and share-
nothing

Port Binding
The twelve-factor app is completely self-contained

and does not rely on runtime injection of a
webserver into the execution environment to create

a web-facing service.

 Concurrency

Twelve-factor app processes should
never daemonize or write PID files.
Instead, rely on the operating system’s
process manager (such as Upstart, a
distributed process manager on a cloud

Disposability

Maximize robustness with fast startup
and graceful shutdown

Dev/prod parity

Logs

Treat logs as event streams,A twelve-factor app
never concerns itself with routing or storage of its

output stream.

Admin processes

ASG
Scheduled action

Instance

One Off task

Run admin/management tasks as one-
off processes

How do we apply this on AWS
with Docker

Some Context

Years Ago Now

Dev | Ops DevOps,Cross Functional team

8 teams 40+ teams

monoliths micro services(decomissioning)

2 Data Centers 2 DC + 100 AWS accounts

Ops Deploying TMI && Continuous Delivery

Some Glossaries

AMI: Amazon Machine Image

ELB: Elastic Load Balancer

ASG: Auto Scaling Group

Cloudwatch: AWS Monitoring Service

CloudFormation: Manage AWS resources with JSON template

Newrelic: Application Monitoring

Splunk: Enterprise Log Aggregator

Continuous Delivery Before

Commit CI

Processes

base AMI

RPM

AMI
staging config

App
user-data

staging

AMI
prod config

App
user-data

production

Cons
Packaging twice, RPM/AMI

Duplicated effort for automate deployment

Not good for succession plan

Dev/Test/Staging/Prod different

Docker - FTW

Commit CI Docker Image App

Expected

auto-rollback

logging

monitoring

0-downtime deployment

AIM of shipper

Standardising and simplify the way we deploy

Portable between teams and account

shipper.yml

<app/>

$CONFIG

ng
in

x

log collector

requests

SplunkNew Relic

generic AMI

supporting
services

your application

docker-registry

Any web application
any web-app framework
any programming language
any Linux variant

Splunk support
captures stdout/stderr
no app support required

New Relic support
application monitoring
system monitoring
deployment notification

CloudWatch support
alerts you when service is down
via email or web-hook

Auto-scaling
multiple servers
load-balancing
support for scaling schedules

Zero-downtime deployments
safe upgrades
safe config changes

<app/>

$CONFIG

ng
in

x

log collector

requests

SplunkNew Relic

generic AMI

supporting
services

your application

docker-registry

Actual Process

shipper.yml cf templateshipper cf configupdate

app image

AWS resources

env vars

app image

Immutable Deployment (1/2)

Immutable Deployment (2/2)

Docker V2 registry

Deployed 70+ systems

Next Step
Support batched jobs

ECS/ECR

Swarm/Kubernates

Fin

iambowen.m@gmail.com
iambowen.github.io

