ThoughtWorks’

12 Factors App with Docker
On AWS

ThoughtWorks’

About Me : Ma Bowen

*ThoughtWorks Senior Consultant
2Web/RoR/Java/Scala Developer, 3 years DevOps
*Book Translation <Scala Cookbook>

2 AWS Certified Associate Solution Architect

ThoughtWorks’

12facters.net

http://12facters.net

ThoughtWorks’
Methodology for building Web Apps

2 Use declarative formats for setup automation

2 Maximum portability between execution environments
2 Suitable for deployment on modern cloud platforms
“Zkeep environment consistence, continuous deployment

2 Scale with few changes to tooling/architecture etc

ThoughtWorks:

One Codebase, Multiple Deploys

Codebase Deploys

productlon

developer 1

developer 2

ThoughtWorks’

Explicitly declare & isolate dependencies

2Ruby Gemfile, e.g ‘bundle install —path=vendor/bundle’

2Debian/RPM

ThoughtWorks’

Store Config in Environment

Test

A 4

Staging

DB_HOST: testdb
DB_USR: readwrite
DB_PASS:123456

A 4

Production

A 4

DB_HOST: stgdb
DB_USR: stgrw
DB_PASS:password

DB_HOST: proddb
DB_USR: prodrw
DB_PASS:password&

ThoughtWorks:

Backing services as attached resources

Outbound
email service

Attached
resources

ThoughtWorks:

Build release run

ThoughtWorks’

Processes

The app is executed in the execution environment
as one or more processes.
Twelve-factor processes are stateless and share-
nothing

ThoughtWorks’

Port Binding

The twelve-factor app is completely self-contained
and does not rely on runtime injection of a
webserver intfo the execution environment to create
a web-facing service.

ThoughtWorks’

Twelve-factor app processes should
never daemonize or write PID files.
Instead, rely on the operating system’s
process manager (such as Upstart, a
distributed process manager on a cloud

Concurrency

Scale
(running processes)

Workload diversity
(process types)

ThoughtWorks’

Disposability

Maximize robustness with fast startup
and graceful shutdown

ThoughtWorks’

Dev/prod parity

"PERHAPS YOUR MACHINE IS5 THE
ONLY ONE WHERE IT WORKS °*

It works on my machine

ThoughtWorks’

Logs

Treat logs as event streams,A twelve-factor app
never concerns itself with routing or storage of its
output stream.

ThoughtWorks’

Admin processes

ASG

Scheduled action

Instance

One Off task

Run admin/management tasks as one-
off processes

ThoughtWorks’

How do we apply this on AWS
with Docker

ThoughtWorks:

Some Context

Years Ago Now

Dev | Ops DevOps,Cross Functional team
8 teams 40+ teams

monoliths micro services(decomissioning)

2 Data Centers

2 DC + 100 AWS accounts

Ops Deploying

TMI && Continuous Delivery

ThoughtWorks’
Some Glossaries

22 AMI: Amazon Machine Image

2ELB: Elastic Load Balancer

2 ASG: Auto Scaling Group

2 Cloudwatch: AWS Monitoring Service

2 CloudFormation: Manage AWS resources with JSON template
2 Newrelic: Application Monitoring

| 'Splunk: Enterprise Log Aggregator

ThoughtWorks:
Continuous Delivery Before

©@ #164 was successful — Manual run from the stage: Deploy to Production

Stages & jobs

Build summary Tests Commits Artifact
Test and Package

© Publish RPM Build result summary

@ Test Scala Details

© Upload dependency file Completed 15 Mar 2016, 5:04:14 PM — 2
Aminate Duration 25 minutes

© Aminate Labels None #

Backup Staging DB Show mor

(@ Backup Staging Database

Deploy to Staging 0 0

® Deploy to E2E New failures Existing failu

Backup Production DB D

@ Backup Production Write a comment...
Database
Deploy to Production (D

& Deploy to Production Code commits

ThoughtWorks’

staging

AMI

staging config

Processes
Commit— CI — RPM
l user-data
base AMI — AMI

user-data

>

App

production

prod config

>

App

ThoughtWorks’

cons

2 Packaging twice, RPM/AMI
2 Duplicated effort for automate deployment

2Not good for succession plan

2 Dev/Test/Staging/Prod different

ThoughtWorks’

Docker - FTW

ThoughtWorks’

Commit

Expected

O-downtime deployment

auto-rollback

Docker Image

logging

monitoring

ThoughtWorks’

AIM of shipper

| 'Standardising and simplify the way we deploy

t 'Portable between teams and account

ThoughtWorks:

shipper.yml

NV: "some_env"”

. /diagnostic/status/heartbeat
: 9090

+ t2.micro

heme: internet-facing

ThoughtWorks’

Any web application

any web-app framework
any programming language
any Linux variant

Splunk support
captures stdout/stderr
No app support required

CloudWatch support
alerts you when service is down
via email or web-hook

Auto-scaling

multiple servers
load-balancing

support for scaling schedules

Zero-downtime deployments
safe upgrades
safe config changes

New Relic support
application monitoring
system monitoring
deployment notification

ThoughtWorks’

generic AM| /'X

$CONFIG

D

your application

requests —>

supporting

services New Relic Splunk

ThoughtWorks’

Actual Process

ThoughtWorks’

env vars

app image

shipper

app image

’shipﬁer.yml

AWS resources

» cf template

update

cf config

ThoughtWorks’

Immutable Deployment (1/2)

ThoughtWorks’

Immutable Deployment (2/2)

ThoughtWorks’

Docker V2 registry

ThoughtWorks’

Deployed 70+ systems

ThoughtWorks’

Next Step

| 'Support batched jobs
2ECS/ECR

2 Swarm/Kubernates

ThoughtWorks:

lambowen.github.io
lambowen.m@gmail.com

